Overexpression of upstream stimulatory factor 2 accelerates diabetic kidney injury.

نویسندگان

  • Shu Liu
  • Lihua Shi
  • Shuxia Wang
چکیده

Diabetic nephropathy is the most common cause of end-stage renal failure in the United States. Hyperglycemia is an important factor in the pathogenesis of diabetic nephropathy. Hyperglycemia upregulates the expression of transforming growth factor-beta (TGF-beta), which stimulates extracellular matrix deposition in the kidney, contributing to the development of diabetic nephropathy. Our previous studies demonstrated that the transcription factor, upstream stimulatory factor 2 (USF2), was upregulated by high glucose, which bound to an 18-bp sequence in the thrombospondin 1 (TSP1) gene promoter and regulated high glucose-induced TSP1 expression and TGF-beta activity in mesangial cells, suggesting that USF2 might play a role in the development of diabetic nephropathy. In the present studies, we examined the effect of overexpression of USF2 on the development of diabetic nephropathy. Type 1 diabetes was induced in USF2 transgenic mice [USF2 (Tg)] and their wild-type littermates (WT) by injection of streptozotocin. Four groups of mice were studied: control WT, control USF2 (Tg), diabetic WT, and diabetic USF2 (Tg). Mice were killed after 15 wk of diabetes onset. At the end of studies, control USF2 (Tg) mice ( approximately 6 mo old) exhibited increased urinary albumin excretion. These mice also exhibited glomerular hypertrophy, accompanied by increased TSP1, active TGF-beta, fibronectin accumulation in the glomeruli compared with control WT littermates. Type 1 diabetes onset further augmented the urinary albumin excretion and glomerular hypertrophy in the USF2 (Tg) mice. These findings suggest that overexpression of USF2 accelerates the development of diabetic nephropathy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalase Overexpression Prevents Nuclear Factor Erythroid 2–Related Factor 2 Stimulation of Renal Angiotensinogen Gene Expression, Hypertension, and Kidney Injury in Diabetic Mice

This study investigated the impact of catalase (Cat) overexpression in renal proximal tubule cells (RPTCs) on nuclear factor erythroid 2-related factor 2 (Nrf2) stimulation of angiotensinogen (Agt) gene expression and the development of hypertension and renal injury in diabetic Akita transgenic mice. Additionally, adult male mice were treated with the Nrf2 activator oltipraz with or without the...

متن کامل

Soluble Flt-1 gene therapy ameliorates albuminuria but accelerates tubulointerstitial injury in diabetic mice.

VEGF is recognized as a major mediator in the development of diabetic nephropathy. Soluble Flt-1 (sFlt-1) is the endogenous inhibitor of VEGF, and recently genetic overexpression of sFlt-1 in the podocyte was shown to be protective in murine diabetic nephropathy. In this study, we performed a translational study to determine whether an intramuscular gene transfer of sFlt-1 can prevent the progr...

متن کامل

Activation of renal renin-angiotensin system in upstream stimulatory factor 2 transgenic mice.

Previously we demonstrated that upstream stimulatory factor 2 (USF2) transgenic (Tg) mice developed nephropathy including albuminuria and glomerular hypertrophy, accompanied by increased transforming growth factor (TGF)-beta and fibronectin accumulation in the glomeruli. However, the mechanisms by which overexpression of USF2 induces kidney injury are unknown. USF has been shown to regulate ren...

متن کامل

Catalase Deficiency Accelerates Diabetic Renal Injury Through Peroxisomal Dysfunction

Mitochondrial reactive oxygen species (ROS) play an important role in diabetes complications, including diabetic nephropathy (DN). Plasma free fatty acids (FFAs) as well as glucose are increased in diabetes, and peroxisomes and mitochondria participate in FFA oxidation in an interconnected fashion. Therefore, we investigated whether deficiency of catalase, a major peroxisomal antioxidant, accel...

متن کامل

Protective effects of curcumin on diabetic nephropathy via attenuation of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) expression and alleviation of oxidative stress in rats with type 1 diabetes

Objective(s): One of the serious complications of Type1 diabetes (T1D) is diabetic nephropathy, which is accompanied with overexpression of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) and enhanced oxidative stress. The present study was conducted to examine the protective effect of curcumin on the expression of KIM-1, NGAL genes and oxidative damage in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 293 5  شماره 

صفحات  -

تاریخ انتشار 2007